Combustion synthesis of triangular and multifunctional ZnO1-xNx (x <= 0.15) materials

TitleCombustion synthesis of triangular and multifunctional ZnO1-xNx (x <= 0.15) materials
Publication TypeJournal Article
Year of Publication2009
AuthorsMapa, M, Gopinath, CS
JournalChemistry of Materials
Date PublishedJAN

The preparation and characterization of multifunctional ZnO1-xNx (x <= 0.15) via a simple solution combustion method is reported. ZnO1-xNx exhibits visible light absorption, thermal stability, nanometer-/ micrometer-sized triangular particles, and catalytic properties. X-ray diffraction studies of ZnO1-xNx, demonstrate that the lattice oxygen in ZnO is replaced by nitrogen without any major change in the wurtzite structure; however, charge compensation occurs, because of interstitial Zn atoms, as well as oxygen vacancies. Microscopic studies reveal the dominance of nanometer- and micrometer-sized triangles of ZnO1-xNx. UV-visible and Raman spectra indicate a midgap state, derived from N 2p states, and direct Zn-N interaction, respectively. Secondary ion mass spectrometry studies show the presence of N and ZnN species in the bulk and support the direct Zn-N interaction. Electron paramagnetic resonance (EPR) studies indicate the presence of a small amount of defects. Photocatalytic decomposition of rhodamine B, and anisole acylation at room temperature, highlights the effectiveness of ZnO1-xNx to catalysis applications. The aforementioned multifunctional characteristics suggest that ZnO1-xNx might be used in place of conventional ZnO for better control and that it might be explored for further applications in catalysis and optoelectronics.

Type of Journal (Indian or Foreign)


Impact Factor (IF)


Divison category: 
Catalysis and Inorganic Chemistry